organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-[3-Methoxy-4-(prop-2-yn-1-yloxy)phenyl]ethanone

Chun-Hua Zhang,^a* Jing-Min Zhao^b and Bao-Guo Chen^a

^aCollege of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Inner Mongolia Autonomous Region Tongliao, 22 Huolinhe street, 028000, People's Republic of China, and ^bInstitute of Higher Vocational Education, Tongliao Vocational College, Inner Mongolia Autonomous Region Tongliao, 152 Huolinhe street, 028000, People's Republic of China Correspondence e-mail: zhangchtl@hotmail.com

Received 3 December 2010; accepted 12 December 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.056; wR factor = 0.169; data-to-parameter ratio = 14.1.

In the title compound, $C_{12}H_{12}O_3$, the methoxy and prop-2ynyloxy groups are nearly coplanar with the attached benzene ring $[C-O-C-C \text{ torsion angles} = 1.2(3) \text{ and } 2.2(3)^\circ$, respectively]. In the crystal, inversion dimers linked by pairs of C-H···O interactions occur.

Related literature

For the β -O-4 substructure in lignin, see: Cathala *et al.* (2003). For attempts to prepare well defined linear polymers with the β -O-4 structure and to develop new methods of utilizing lignins, see: Kishimoto et al. (2005). For a related structure, see: Yang et al. (2009).

Experimental

Crystal data C12H12O3

 $M_r = 204.22$

Monoclinic, $P2_1/c$	Z = 4
a = 12.152 (2) Å	Mo $K\alpha$ radiation
b = 8.9870 (18) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 10.179 (2) Å	T = 293 K
$\beta = 103.86 (3)^{\circ}$	$0.30 \times 0.20 \times 0.10 \text{ mm}$
V = 1079.3 (4) Å ³	
Data collection	
Enraf-Nonius CAD-4	1988 independent reflections
diffractometer	1400 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.052$
(North et al., 1968)	3 standard reflections every 200
$T_{\min} = 0.974, \ T_{\max} = 0.991$	reflections
2908 measured reflections	intensity decay: 1%
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.056$	H atoms treated by a mixture of
$wR(F^2) = 0.169$	independent and constrained
S = 1.00	refinement

Table 1	
Hydrogen-bond geometry (Å,	°).

1988 reflections

141 parameters

 $D - H \cdot \cdot \cdot A$ D - H $H \cdots A$ $D \cdots A$ $D = H \cdots A$ $C12 - H12A \cdots O2^{i}$ 0.90(4)2.40(4)3.270 (3) 164 (3)

 $\Delta \rho_{\text{max}} = 0.21 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

Symmetry code: (i) -x + 1, -y, -z + 2.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2210).

References

- Cathala, B., Saake, B., Faix, O. & Monties, B. (2003). J. Chromatogr. A, 1020, 229-239
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. Kishimoto, T., Uraki, Y. & Ubukata, M. (2005). Org. Biomol. Chem. 3, 1067-1073.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yang, X.-H., Zhou, Y.-H. & Song, X. (2009). Acta Cryst. E65, 01489.

supplementary materials

Acta Cryst. (2011). E67, o150 [doi:10.1107/S1600536810052074]

1-[3-Methoxy-4-(prop-2-yn-1-yloxy)phenyl]ethanone

C.-H. Zhang, J.-M. Zhao and B.-G. Chen

Comment

Lignin is natural polymer occurring in plant cell walls and considered to be the second most abundant biopolymer after cellulose and the β -O-4 structure is the most abundant substructure in lignin (Cathala B. *et al.*, 2003). Lignin is an amorphous polyphenolic material arising from an enzyme-mediated dehydrogenate polymerization of three major phenylpropanoid monomers, i. e., coniferyl, sinapyl and p-coumaril alcohol. Therefore, lignin can be oxidized to produce syringaldehyde, vanillin, *p*-hydroxybenzaldehyde and acetovanillone etc. Acetovanillone and vanillin are usually used to synthesize lignin mimics (Kishimoto T. *et al.*, 2005). In order to prepare well defined linear lignin mimics composed of the β -O-4 structure by "Click Chemistry" using acetovanillone, an intermediate product C₁₂H₁₂O₃, the title compound was synthesized and identified by crystal structure analysis. In the molecular structure of the title compound, the acetophenone unit is almost a planar with a torsion angle C5—C6—C7—O1, -3.5 (3)° (Fig. 1). In addition, the methoxy group and the prop-2-ynyloxy group are nearly coplanar with the attached benzene ring [C9—O2—C4—C5 = 1.2 (3)° and C10—O3—C2, 2.2 (3)°]. In the crystal structure weak intermolecular C_{terminal alkynes}—H···O_{methoxy} interactions aref found.

Experimental

A mixture of 4'-hydroxy-3'-methoxyacetophenon (5 mmol), propargyl bromide (5 mmol) and triethylamine (5 mmol) was stirred in acetone (20 ml) at 353 K. After completion of the reaction (TLC monitoring), the reaction mixture was diluted with ether (100 ml) and washed with water 3 times. The organic phase was dried over with anhydrous Na₂SO₄ and concentrated to dryness in *vacuo*. The obtained crude crystalline was purified by column chromatography to obtain a pure white solid. Colourless single crystals suitable for X-ray crystallographic analysis were grown by slow evaporation of an ethyl actate solution of the title compound.

Refinement

The H atoms were fixed geometrically and allowed to ride on the attached non-H atoms, with C—H = 0.93–0.97 Å, and with $U_{iso}(H) = 1.5 U_{eq}(C)$ for methyl H atoms and 1.2 $U_{eq}(C)$ for all other atoms.

Figures

Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

1-[3-Methoxy-4-(prop-2-yn-1-yloxy)phenyl]ethanone

Crystal data

C ₁₂ H ₁₂ O ₃	F(000) = 432
$M_r = 204.22$	$D_{\rm x} = 1.257 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
a = 12.152 (2) Å	$\theta = 9-13^{\circ}$
b = 8.9870 (18) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 10.179 (2) Å	T = 293 K
$\beta = 103.86 \ (3)^{\circ}$	Block, colourless
$V = 1079.3 (4) \text{ Å}^3$	$0.30 \times 0.20 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Enraf–Nonius CAD-4 diffractometer	1400 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\text{int}} = 0.052$
graphite	$\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
$\omega/2\theta$ scans	$h = -14 \rightarrow 0$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$k = -3 \rightarrow 10$
$T_{\min} = 0.974, \ T_{\max} = 0.991$	$l = -11 \rightarrow 12$
2908 measured reflections	3 standard reflections every 200 reflections
1988 independent reflections	intensity decay: 1%

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H atoms treated by a mixture of independent and constrained refinement

$P(F^2) = 0.1(0)$	$w = 1/[\sigma^2(F_0^2) + (0.1P)^2 + 0.1P]$
$WR(F_{-}) = 0.169$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{max} < 0.001$
1988 reflections	$\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$
141 parameters	$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.066 (9)

Special details

Experimental. Absorption correction: semi-empirical absorption based on psi-scan (North et al., 1968)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{iso}*/U_{eq}$
01	0.02729 (15)	-0.0061 (2)	0.20836 (17)	0.0658 (6)
C1	0.29554 (18)	0.1655 (3)	0.3643 (2)	0.0511 (6)
H1A	0.3039	0.2296	0.2956	0.061*
O2	0.26138 (12)	-0.10284 (18)	0.68203 (14)	0.0529 (5)
C2	0.37931 (19)	0.1593 (3)	0.4840 (2)	0.0506 (6)
H2A	0.4444	0.2170	0.4943	0.061*
03	0.44025 (13)	0.05304 (19)	0.71063 (15)	0.0527 (5)
C3	0.36568 (17)	0.0674 (2)	0.5876 (2)	0.0428 (5)
C4	0.26800 (18)	-0.0201 (2)	0.5718 (2)	0.0409 (5)
C5	0.18711 (18)	-0.0157 (2)	0.4518 (2)	0.0426 (6)
H5A	0.1230	-0.0754	0.4405	0.051*
C6	0.19980 (18)	0.0773 (2)	0.3462 (2)	0.0433 (6)
C7	0.1073 (2)	0.0778 (3)	0.2195 (2)	0.0493 (6)
C8	0.1143 (2)	0.1817 (4)	0.1077 (3)	0.0835 (10)
H8A	0.0491	0.1684	0.0338	0.125*
H8B	0.1818	0.1612	0.0775	0.125*
H8C	0.1164	0.2824	0.1397	0.125*
C9	0.1630 (2)	-0.1939 (3)	0.6694 (3)	0.0616 (7)
H9A	0.1675	-0.2465	0.7526	0.092*
H9B	0.1590	-0.2640	0.5973	0.092*
Н9С	0.0965	-0.1323	0.6498	0.092*
C10	0.54011 (18)	0.1439 (3)	0.7385 (2)	0.0510 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H10A	0.5201	0.2485	0.7291	0.061*
H10B	0.5873	0.1203	0.6768	0.061*
C11	0.59931 (19)	0.1100 (3)	0.8775 (3)	0.0547 (6)
C12	0.6418 (3)	0.0809 (4)	0.9899 (3)	0.0737 (9)
H12A	0.669 (3)	0.067 (4)	1.079 (4)	0.094 (11)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0531 (10)	0.0781 (13)	0.0590 (11)	-0.0090 (10)	-0.0009 (8)	0.0004 (9)
C1	0.0513 (13)	0.0543 (14)	0.0470 (12)	-0.0053 (12)	0.0105 (10)	0.0068 (11)
O2	0.0519 (9)	0.0597 (10)	0.0453 (9)	-0.0136 (8)	0.0080(7)	0.0078 (7)
C2	0.0457 (12)	0.0544 (14)	0.0507 (13)	-0.0109 (11)	0.0097 (10)	0.0047 (11)
O3	0.0472 (9)	0.0611 (10)	0.0448 (9)	-0.0132 (8)	0.0011 (7)	0.0045 (7)
C3	0.0422 (11)	0.0469 (13)	0.0377 (11)	-0.0025 (10)	0.0065 (9)	-0.0021 (10)
C4	0.0446 (11)	0.0379 (11)	0.0411 (11)	-0.0014 (9)	0.0120 (9)	-0.0010 (9)
C5	0.0397 (11)	0.0439 (12)	0.0443 (12)	-0.0027 (10)	0.0105 (9)	-0.0046 (10)
C6	0.0456 (12)	0.0429 (12)	0.0411 (11)	0.0044 (10)	0.0096 (9)	-0.0007 (9)
C7	0.0467 (12)	0.0523 (14)	0.0464 (13)	0.0077 (12)	0.0065 (10)	-0.0001 (11)
C8	0.0727 (18)	0.102 (2)	0.0613 (16)	-0.0064 (18)	-0.0130 (14)	0.0324 (17)
C9	0.0553 (14)	0.0652 (16)	0.0652 (15)	-0.0146 (13)	0.0160 (12)	0.0131 (13)
C10	0.0437 (12)	0.0570 (14)	0.0495 (13)	-0.0083 (11)	0.0056 (10)	-0.0030 (11)
C11	0.0470 (12)	0.0611 (16)	0.0533 (14)	-0.0080 (12)	0.0071 (11)	-0.0022 (12)
C12	0.0720 (18)	0.086 (2)	0.0551 (17)	-0.0111 (16)	-0.0008 (14)	0.0035 (16)

Geometric parameters (Å, °)

1.214 (3)	C6—C7	1.494 (3)
1.383 (3)	С7—С8	1.490 (4)
1.389 (3)	C8—H8A	0.9600
0.9300	C8—H8B	0.9600
1.365 (3)	C8—H8C	0.9600
1.429 (3)	С9—Н9А	0.9600
1.381 (3)	С9—Н9В	0.9600
0.9300	С9—Н9С	0.9600
1.365 (3)	C10-C11	1.457 (3)
1.433 (3)	C10—H10A	0.9700
1.400 (3)	C10—H10B	0.9700
1.373 (3)	C11—C12	1.167 (4)
1.399 (3)	C12—H12A	0.90 (3)
0.9300		
120.7 (2)	C8—C7—C6	119.5 (2)
119.7	С7—С8—Н8А	109.5
119.7	С7—С8—Н8В	109.5
116.81 (17)	H8A—C8—H8B	109.5
119.8 (2)	С7—С8—Н8С	109.5
120.1	H8A—C8—H8C	109.5
120.1	H8B—C8—H8C	109.5
	1.214 (3) 1.383 (3) 1.389 (3) 0.9300 1.365 (3) 1.429 (3) 1.381 (3) 0.9300 1.365 (3) 1.433 (3) 1.400 (3) 1.373 (3) 1.399 (3) 0.9300 120.7 (2) 119.7 116.81 (17) 119.8 (2) 120.1	1.214(3) $C6-C7$ $1.383(3)$ $C7-C8$ $1.389(3)$ $C8-H8A$ 0.9300 $C8-H8B$ $1.365(3)$ $C8-H8C$ $1.429(3)$ $C9-H9A$ $1.381(3)$ $C9-H9B$ 0.9300 $C9-H9C$ $1.365(3)$ $C10-C11$ $1.433(3)$ $C10-H10A$ $1.400(3)$ $C10-H10B$ $1.373(3)$ $C11-C12$ $1.399(3)$ $C12-H12A$ 0.9300 $C9-C6$ 119.7 $C7-C8-H8A$ 119.7 $C7-C8-H8B$ $116.81(17)$ $H8A-C8-H8B$ $119.8(2)$ $C7-C8-H8C$ 120.1 $H8B-C8-H8C$

C3—O3—C10	118.19 (17)	O2—C9—H9A	109.5
O3—C3—C2	125.65 (19)	О2—С9—Н9В	109.5
O3—C3—C4	114.25 (18)	Н9А—С9—Н9В	109.5
C2—C3—C4	120.1 (2)	О2—С9—Н9С	109.5
O2—C4—C5	125.21 (19)	Н9А—С9—Н9С	109.5
O2—C4—C3	115.26 (19)	Н9В—С9—Н9С	109.5
C5—C4—C3	119.53 (19)	O3—C10—C11	105.73 (19)
C4—C5—C6	120.9 (2)	O3-C10-H10A	110.6
С4—С5—Н5А	119.6	C11-C10-H10A	110.6
С6—С5—Н5А	119.6	O3—C10—H10B	110.6
C1—C6—C5	119.0 (2)	C11-C10-H10B	110.6
C1—C6—C7	123.2 (2)	H10A-C10-H10B	108.7
C5—C6—C7	117.8 (2)	C12-C11-C10	176.8 (3)
O1—C7—C8	120.6 (2)	C11—C12—H12A	173 (2)
O1—C7—C6	119.9 (2)		
C6—C1—C2—C3	-1.8 (4)	C3—C4—C5—C6	-1.4 (3)
C10—O3—C3—C2	2.2 (3)	C2—C1—C6—C5	1.6 (3)
C10—O3—C3—C4	-176.96 (19)	C2—C1—C6—C7	-179.4 (2)
C1—C2—C3—O3	-178.8 (2)	C4—C5—C6—C1	0.0 (3)
C1—C2—C3—C4	0.4 (3)	C4—C5—C6—C7	-179.01 (19)
C9—O2—C4—C5	1.2 (3)	C1—C6—C7—O1	177.5 (2)
C9—O2—C4—C3	-179.78 (19)	C5—C6—C7—O1	-3.5 (3)
O3—C3—C4—O2	1.4 (3)	C1—C6—C7—C8	-2.5 (4)
C2—C3—C4—O2	-177.8 (2)	C5—C6—C7—C8	176.5 (2)
O3—C3—C4—C5	-179.54 (19)	C3—O3—C10—C11	177.2 (2)
C2—C3—C4—C5	1.2 (3)	O3—C10—C11—C12	-25 (6)
O2—C4—C5—C6	177.52 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C12—H12A···O2 ⁱ	0.90 (4)	2.40 (4)	3.270 (3)	164 (3)
Symmetry codes: (i) $-x+1$, $-y$, $-z+2$.				

